
847IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 4, APRIL 1995

Effects of Conductor Edge Profile on Transmission

Properties of Conductor-Backed

Coplanar Waveguides
Lei Zhu, Member, IEEE, and Eikichi Yamashita, Fellow, IEEE

Abstract-A boundary integral equation method is applied to
the full-wave analysis of conductor-backed coplanar waveguides

with a rectangular or trapezoidal conductor cross-section. Dne

to a particular choice of Green’s functions for each subregion
defined in a given cross-section, electromagnetic fields in each

subregion are analytically expressed in terms of equivalent mag-

netic currents on apertures and resulting integration contours are
defined only on aperture surfaces. Consequently, this approach

can overcome relative convergence problems even in the case of
largely different aperture widths among subregions. Numerical
data show that this approach has a stable convergence property
and requires a short computation time. Numerical results ob-

tained with this approach are in excellent agreement with other
available theoretical data. A series of calculated data for some
rectangular and trapezoidal conductor configurations are pro-
vided to show the effects of conductor edge profile on transmission

properties of conductor-backed coplanar wavegnides.

L INTRODUCTION

P LANAR TRANSMISSION LINES were extensively stud-

ied theoretically and experimentally for many years [1].

The coplanar waveguide was proposed by Wen [2] as a

promising planar transmission line which was made of a

central strip with two ground planes on the same surface

of a substrate. For heat removal from practical devices, an

additional ground plane is placed on the other surface of

the substrate. This makes up a conductor-backed coplanar

waveguide (CBCPW) [3]. Its transmission properties have

been analyzed using the spectral domain method [3], [4], and

the transverse resonance method [5].

As for the CBCPW structure with finite metallization thick-

ness, the transverse resonance method is a typical numerical

method for the full-wave analysis of its transmission proper-

ties. A serious relative convergence problem, however, was

found with the application of the transverse resonance method

and it was treated by many scholars using varied processes

[5]-[8]. The above-mentioned problem can be reduced to some

extent by using an improved transmission-matrix formulation

[7] and a scattering-type transverse resonance technique [5],

[6] .

Recently, an extended and a mixed spectral domain method,

which were essentially the same, were proposed by Kitazawa

et al. [4], [9] and Chan et al. [10], respectively, to analyze
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the properties of planar transmission lines with or without

finite metallization thickness. These methods use spectral

dyadic Green’s functions for each subregion defined in a

given cross-section to express electromagnetic fields in each

subregion. These approaches may be able to overcome the

relative convergence seen in the standard transverse resonance

method, but may add more analytical manipulations such as

complicated Fourier transforms.

In a previous paper, the authors reported the eigenfunction

weighted boundary integral equation method for the full-

wave analysis of various planar transmission lines with finite

metallization thickness [11]. Although l.he eigenfunctions are

simpler than Green’s functions, longer computation time and

relative convergence problems can not be avoided in the

case of an extremely large ratio of aperture widths among

subregions.

In this paper a new boundary integral equation method

[12] is applied for the study of the transmission properties

of conductor-backed coplanar waveguides which uses Green’s

functions, the Green’s identity, and the equivalence principle.

In comparison with varied transverse resonance techniques

combined with the mode-matching procedure where the nu-

merical expansion of hybrid fields are performed in each

rectangular subregion [5], [6], numerical processes of the

present procedure is limited only on each aperture between

two adjacent subregions because of a special choice of Green’s

functions which is satisfied with homogeneous boundary con-

ditions of each rectangular subregion. l[n short, the resultant

matrix is only related to the expansion of aperture fields not

to that of regional fields so that the present procedure is su-

perior to the above-mentioned technique in the computational

efficiency and accuracy for structures including an extremely

large difference of subregion widths.

The major difference between the present approach and the

mixed spectral domain method is that the Green’s functions

are set up in the space domain in the present method which,

therefore, can be extended to handle the transmission lines with

arbitrary cross sections similarly to the quasi-TEM analysis

using the boundary element method [13].

As a consequence of current trends in MMIC’s toward

higher frequencies and higher component densities, the ef-

fects of conductor thickness and conductor edge profile can

not be neglected anymore due to narrower strip widths of

microstrip lines [14], [15], narrower slot apertures of CPW’s,

and underetching and electrolytical growth in the fabrication
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Fig. 1. Cross-sectional geometry of CBCPWS with rectangular or trape-
zoidal conductor cross-sections.

process. In this paper, we will especially focus our attention

to the effects of rectangular and trapezoidal conductor cross

sections on the transmission properties of microstrip lines and

conductor-backed CPW’s. A series of numerical results are

provided to show such important effects.

II. ANALYSIS METHOD

In the previous publications [16], the free-space Green’s

function was generally chosen as an auxiliary function in

the boundary integral equation approach. In the analysis of

arbitrary cross-sections, the free-space Green’s function and

the whole-region Green’s function were used to analyze the

propagation properties of microstrip lines with finite metal-

lization thickness [17] and a trapezoidal transmission line [13]

based on the quasi-TEM wave approximation, and a microstrip

line with arbitrary cross section based on the rigorous full-

wave analysis [14] where boundary integrations were defined

on conductor surfaces using the Green’s function satisfying

the field continuity at substrate interface. As for coplanar

waveguides consisting of a wide conductor surface and a

narrow aperture surface, boundary integration contours should

be shortened and limited only on aperture surfaces by choosing

suitable Green’s functions.

Fig. 1 shows the cross-section of conductor-backed copla-

nar waveguides (CBCPW’s) with rectangular and trapezoidal

conductor strips of five kinds. Fig. l(a) is a typical model

discussed in the previous analysis, and the other four kinds

of cross-sections as shown in Fig. 1 (b)–(e) are profiles ap-

proximating some modifications caused by underetching or

electrolytical growth during the fabrication. Fig. 2(a) shows

a cross-section of CBCPW with an arbitrary conductor edge

profile. According to the symmetry of this structure, only a

half of the cross-section is taken into account in the analysis.

Since the magnitude of electromagnetic fields can be negligible

at a far away point from the central strip and the edge of

the ground conductors, an electric or magnetic wall at a far

point from the symmetrical plane is assumed to exist for

speeding up the series convergence of Green’s functions. In

SIJBREGION’ I

(b)

Fig. 2. Cross-sectional geometry of a CBCPW with u-bitrary conductor edge
profile. (a) Cross-sectional geometry. (b) A half of the cross-section to be
analyzed.

addition, any arbitrary configuration of aperture subregions can

be decomposed into rectangular subregions as shown in Fig.

2(b) of the half cross-section.

The half cross-section is divided into five uniform sub-

regions with rectangular configurations as shown in Fig.

2(b). Like the transverse resonance method, electromagnetic

fields in each subregion are written as a superposition of

the TM-mode and the TE-mode propagating in the z-axis.

The difference between the transverse resonance method and

the present method is that the analytical Green’s functions

satisfying the boundary conditions of rectangular subregions

are chosen as field expressions of the TM-mode and the

TE-mode for each subregion in the present method while

approximate mode summations are chosen in the case of

the transverse resonance method. The Green’s identity of the

second kind is written as

which results in fields in each subregion expressed in terms of

fields on the aperture of each subregion as follows:

/

8G’(T, Ts)
E.(r) = –

h~
Ez(rs)d’ (2a)

aperture

Hz(r) =
!

Gh(T, ~s)
~~z(~s) ~ls

~ns
(2b)

aperture

where G= and Gh denote the two kinds of Green’s functions

corresponding to the TM-mode and the TE-mode, respectively.

The symbols, r and TS denote the field position and the source

position, respectively.

In order to conveniently utilize the tangential continuhy of

fields on each aperture between two adjacent subregions, it is

necessary to transform the above normal differentiation terms

to tangential components and tangential differentiation terms.

Consequently, the following relations are derived by means of

a simple decomposition of Maxwell’s equations as

(3a)
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(3b)

where

k: = Wzpis – /32. (4)

Substituting (3) into (2) and carrying out some transfor-

mations of differentiation terms, the magnetic fields in each

subregion are expressed in terms of the tangential electric

fields on

functions

the apertures, Ez and Ez, and analytical Green’s

in the following form:

Hz =
/

[G,lEx + G@z]dzs (5a)
aperture

Hz =
/

[G,lEZ + G22Ez]dx~ (5b)
aperture

where G1l, G12, G21, and G22 are the four terms of the space

dyadic Green’s function which are written as

dGm
G~~=B~x

m

W2FE — /%:m d2Gm
G12=~ ~z —

zm 8X8XS
m

G21 = k: ~ Gm

m

8G~
G22=B~=

m

where

G~ = _ 2 @( ’L)d(xs)
Ukvm sin(kvm lL)

{

Cos[ftum(y – h)] @kumYs) (Y > Ys)

Cos(kgmy) Cos[kum(ys – ~)1 (Y < Ys)

and

#(x) =

[

sin(kZ~,s) (m=l,2,..., cm)

(in subregion I, V)

\
Cos[k,.m(z – w/2)] (m = 0, 1>..., ~)

(in subregion II, III, IV)

(6a)

(6b)

(6c)

(6d)

(7)

(8)

kEm =

!
(Zm–l)fi
— (m= 1,2,... ,00) (in subregion I, V)

2a

03 (m= 0,1,..., cm) (in subregion II, III, IV)

(9)

k~m = W2PE – /32 – ~2
zm. (lo)

The magnetic fields as expressed in (5) are defined on the

aperture of various subregions to set up boundary integral

equations based on the continuity of tangential magnetic

fields. On the other hand, electric fields on the aperture

can be replaced by equivalent magnetic surface currents in

two opposite directions, A4 and – M, on the two surfaces

of perfectly conducting planes, according to the equivalence

principle [18]. In the practical computations, the tangential

magnetic fields and equivalent magnetic currents on each

aperture are expressed in a series form with finite terms.

Here, we select simple sine and cosine functions as the basis

functions for the magnetic fields and the equivalent magnetic

currents on each aperture. The continuity conditions on the

aperture between two adjacent subregions are expressed using

the Galerkin’s method with the same weighting functions as

the basis functions in the following integral form:

/ [H; -HJ’w.dc==o (ha)

/
[H: - H,;]wzdx == O. (llb)

aperture

Based on the above relations, the equivalent magnetic

currents on the aperture of various subregions can be utilized

to connect field functions in two adjacent subregions. As for

the five rectangular subregions as shown in Fig. 2(b), four pairs

of boundary integral equations are formulated sequentially

substituting (5) into (11 ), in which only equivalent magnetic

currents on four apertures remain as the unknown functions

and other expressions have only the unknown propagation

constant. For the sake of simplicity, two pairs of boundary

integral equations are written for the cross-section with three

subregions, such as CBCPW with a rectangular conductor

cross-section as follows:

[
[@!lm2 + 2’2 1G1l iWz2]dzs wzldx = O (12b)—

12

Jll )

where 11 and 12 denote the aperture widths between the

subregion I and II, and the subregion II &nd III, respectively.

The equivalent magnetic currents, Mxl and MZI, on the

aperture between the subregion I and II, MZ2 and Mzz on

the aperture between the subregion II and 1H can be expressed

in a series form using the following basis functions:

(j.(x,s) = Cos [7(xs - w/2)] (n= O,l,... jco) (13a)

#Z(xS) = sin [~(x,s - w/2)] (n= 1,2,... ,00). (13b)

The weighting functions, WZ and wZ., are expressed by

the same functions as the basis functions, & and d., listed
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in (13). In numerical calculations, the number of the basis

functions and the weighting functions are taken as the same

finite number, N, while the number of Green’s function terms

are selected as the finite number, M, independently from N.

The more terms in Green’s function series are taken, the more

rigorous results are naturally obtained. The increase of the

series terms, M, does not lead to any numerical instabilities

as seen in the transverse resonance method [5], but makes

numerical results more convergent to rigorous solutions.

As a result of the above manipulations, the integral form

of (12) can be rewritten as a system of linear homogeneous

equations with the order of 4N in a matrix form

[

[All] [Bll] [Alz] [B,Z] [X,]
[c,,] [D,,] [c,,] [D,,]

II 1

[a = [()] (14)
[An] [h] [A22] [~221 ~;

[C21] [D21] [C22] [~22]

where the symbols, [Xl], [Zl], [X2] and [22], denote the

unknown sub-matrices corresponding to the unknown coeffi-

cients in the equivalent magnetic currents on the two apertures.

The unknown propagation constant, ~, is included in each of

the coefficient sub-matrices, [Aij], [Bij], [Cij], and [Dij].

For the cross-section with the five subregions as shown in

Fig. 2(b), linear homogeneous equations with the order of

2(N1 + N2 + N3 + N4) similar to (14) are derived based

on the analytical processes, where the symbol, Nj, denotes

the number of the basis functions on the j-th aperture.

III. NUMERICAL RESULTS

An generalized program is constructed based on the above-

mentioned model and all of numerical computations are per-

formed on a Sun 4 workstation. The convergence properties

in the present method are firstly illustrated in Fig. 3 for a

conductor-backed coplanar waveguide (CBCPW) with zero-

thickness strip conductor in the case of the width ratio of

(a/2)/s = 25. Fig. 3(a) shows the convergence curve and

CPU time with respect to the number of basis functions on

the aperture, N, with the term number of Green’s function

series, Ll = 400. It is found in Fig. 3(a) that convergence

speed for the odd number N is much faster than that for the

even number N and CPU time is almost proportional to the

square of N. From the convergence curve with the number of

the basis functions N = 3 as shown in Fig. 3(b), we find that

CPU time is almost proportional to M and effective dielectric

constants converge to accurate values without instability.

Fig. 4 compares the numerical results by the present method
with those given in [14] for an open microstrip line with a

trapezoidal conductor cross-section with the discrepancy of

less than 2.0%. There still exists a small discrepancy between

the two results produced by the assumption of two electric

walls. Fig. 5 shows that numerical results obtained by the

present method are in good agreement with those given in [5]

for a conductor-backed coplanar waveguide with a rectangular

conductor cross-section.

Compared with the microstrip line, the dispersion property

of the conductor-backed coplanar waveguide depends not only

on the substrate height and strip width but also on the slot

width located on the dielectric interface. Under our present
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Fig. 3. Convergence properties for a CBCPW with zero-thickness strip

conductor (w = 72.4 pm, s/w = 0.5, a/w = 25, h = 100 pm, E, = 12.9)

(a) Number of basis functions and its CPU times. (b) Number of Green’s
function series and its CPU times
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Fig. 4. Comparison of the propagation constants of the microstrip line having
a trapezoidal conductor cross-section calculated by the present method with
those given in [14] (w = 3 mm, t = 0.3 mm, h = 0.635 mm, a = mm,
15 E, = 9.8).

knowledge, any theoretical or experimental report on the

entire shape of its dispersion curve has not been published.

With the increase of frequencies, conceptually, the effective

dielectric constant of the dominant mode tends to the relative

permittivity of the dielectric substrate. However, it is difficult

theoretically to give a quantitative judgment on the position
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Fig.5. Comparison of thepropagation constants ofa CBCPW having finite

metallization thickness calculated by the present method with those given by

[5] (2w = s = 80 #m, a = 1.2 mm, h = 0.3 mm, t = 5 pm, E, = 12.9),
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Fig. 6, Effective dielectric constants versns frequencies for a CBCPW with
finite metallization thickness (w = 72.4 pm, h = 0.1 mm, 6, = 12.9).

where the relatively rapid increase in G starts and how fast

its increase speed is. A series of entire dispersion curves with

different slot widths will initially be provided as follows,

Fig. 6 provides some dispersion curves for conductor-

backed coplanar waveguides with strip conductor thickness

t = O, 5, and 10 ,um for the aperture width of s/w = 0.25

and 2.0. Strip conductor thickness will give stronger effects

on effective dielectric constants of CBCPW in the case of

smaller aperture widths than large ones. At high frequencies,

the effective dielectric constants with the same aperture widths

are always close to the same values. The effective dielectric

constants for small aperture widths are smaller than those

for large aperture widths at low frequencies, but situation

is reverse at high frequencies. Fig. 7 shows the effective

dielectric constants versus aperture widths for strip conductor

thickness t = O, 5, and 10 pm at ~ = 1 GHz and 30 GHz.

With the decrease of aperture widths, the effective dielectric

constants for ideal zero conductor thickness will tend to a
stable value. However, those for finite conductor thickness

will always close to the permittivity of air region due to the

concentration of electromagnetic energy into gap subregion

filled with air.

For a CBCPW with the trapezoidal strip conductor cross-

sections, the number of steps in a staircase approximation
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Fig. 7. Effective dielectric constants versns aperture widths for a CBCPW
with finite metallization thickness (w = 72,4 f~m, s~ w = 0.25, h = 0.1 mm,
C, = 12.9). (a) f = 1 GHz, (b) ~ = 30 GHz.

En‘e-:----+------__---A----- .

e ‘..06 ,, — 8 ~45° Fig.9(a)u ,, . 0=135’3
,. ____
... 8 =450 ~g,, ,

9 S1350

qc~
2 4

Numberof steps

Fig. 8. Convergent diagram of the number of steps for the conductor

thickness t = 5 pm.

should be proportional to the conductor thickness for an exact

modeling. For the case of relatively thin conductor thickness

(t = 5 ~m in Figs. 9-1 1), however, it is found from the

convergent diagram as shown in Fig. 8 that a three-term stair-

case approximation is accurate enough to model the edge of

the trapezoidal conductor.

Fig. 9 shows the dispersion curves of CBCPW with the

trapezoidal strip conductor cross-sections for aperture widths

sfw = 0.25 and 2.0. It is found that the angles of conductor

edge wall affects the transmission properties in the case of

s/w = 0.25 over the case of s/w = 2.0 especially at low
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Flg.9. Effective dielectric constants versus frequencies fora CBCPW with

trapezoidal conductor cross-section (w = 72.4pm, h = 0.1 mm, t= 5 &m,

E~ = 12.9). (a) s/w = 0.25. (b) s/w = 2.0.
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Fig. 10. Effective dielectric constmts versus ti&angle forthestmcture given
in Fig. 9.

frequencies. Fig. 10 provides effective dielectric constants

versus angles O with aperture widths s/w = 0.25 and 2.0

at j = 1 and 30 GHz. Figs. 9 and 10 tell us that effects of

conductor edge wall angles in the small aperture widths of

CBCPW must be necessarily taken into account especially at

low frequencies even ifconductor thickness is very small.

Fig. 11 shows dispersion curves of CBCPW with other

trapezoidal strip conductor cross-sections for s/w= 0.25 and

I I 1 r 1 I I I , 1

I ........ e =900 f

11*]
——-.9=1350

10

~
s/w=l .0 /?’. /<.,

---<: --. . . ---- A
-L, -Ws

8
ht

I 1 I 1 I 1 I , ) I I
0 50 100

Frequency (GHz)

Fig. 11. Effective dielectric constants versns frequencies for a CBCPW with
trapezoidal conductor cross-section (w = p 72.4 m, h = 0.1 mm, t = 5
~~m, s, = 12.9).

2,0. Aperture widths also give some effects on transmission

properties but the angles of conductor edge walls produce

smaller effect on transmission properties compared with the

structures in Fig. 9, even in the case of small aperture widths.

Until here, dispersion characteristics of CBCPW lines with

trapezoidal cross-sections have been analyzed numerically for

different aperture widths. With the decrease of aperture widths,

it is found that propagation constants are affected markedly

by conductor edge profiles. In the case of an extremely small

aperture width for CBCPW lines, a small variation of the angle

of conductor strip edge walls can still bring a huge affection

on propagation characteristics because of a concentration of

field distributions on the aperture, which should be given a

well worthwhile attention in the design of small-sized devices

and components of MMIC’s.

IV. CONCLUSION

In this paper, the boundary integral equation method was ex-

tended for the analysis of transmission properties of conductor-

backed coplanar waveguides with rectangular or trapezoidal

strip conductor cross-sections. Because electromagnetic fields

in each subregion are expressed using an arbitrary number of

Green’s function series terms independently from the form

of tangential fields on each aperture, this approach could

shorten computation time and avoid relative convergence

problems. Effects of conductor edge profile on transmission

properties were discussed for different sizes of aperture width
and strip conductor thickness. This Green’s function method

can be easily extended to study the transmission properties

of planar transmission lines, such as microstrip lines and

coplanar waveguides, with arbitrary conductor cross-sections

and complicated multiple dielectric substrates.
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