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Effects of Conductor Edge Profile on Transmission
Properties of Conductor-Backed
Coplanar Waveguides

Lei Zhu, Member, IEEE, and Eikichi Yamashita, Fellow, IEEE

Abstract— A boundary integral equation method is applied to
the full-wave analysis of conductor-backed coplanar waveguides
with a rectangular or trapezoidal conductor cross-section. Due
to a particular choice of Green’s functions for each subregion
defined in a given cross-section, electromagnetic fields in each
subregion are analytically expressed in terms of equivalent mag-
netic currents on apertures and resulting integration contours are
defined only on aperture surfaces. Consequently, this approach
can overcome relative convergence problems even in the case of
largely different aperture widths among subregions. Numerical
data show that this approach has a stable convergence property
and requires a short computation time. Numerical results ob-
tained with this approach are in excellent agreement with other
available theoretical data. A series of calculated data for some
rectangular and trapezoidal conductor configurations are pro-
vided to show the effects of conductor edge profile on transmission
properties of conductor-backed coplanar waveguides.

I. INTRODUCTION

LANAR TRANSMISSION LINES were extensively stud-

ied theoretically and experimentally for many years [1].
The coplanar waveguide was proposed by Wen [2] as a
promising planar transmission line which was made of a
central strip with two ground planes on the same surface
of a substrate. For heat removal from practical devices, an
additional ground plane is placed on the other surface of
the substrate. This makes up a conductor-backed coplanar
waveguide (CBCPW) [3]. Its transmission properties have
been analyzed using the spectral domain method [3], [4], and
the transverse resonance method [5].

As for the CBCPW structure with finite metallization thick-
ness, the transverse resonance method is a typical numerical
method for the full-wave analysis of its transmission proper-
ties. A serious relative convergence problem, however, was
found with the application of the transverse resonance method
and it was treated by many scholars using varied processes
[5]-[8]. The above-mentioned problem can be reduced to some
extent by using an improved transmission-matrix formulation
[7] and a scattering-type transverse resonance technique [5].
[6].

Recently, an extended and a mixed spectral domain method,
which were essentially the same, were proposed by Kitazawa
et al. [4], [9] and Chan et al. [10], respectively, to analyze
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the properties of planar transmission lines with or without
finite metallization thickness. These methods use spectral
dyadic Green’s functions for each subregion defined in a
given cross-section to express electromagnetic fields in each
subregion. These approaches may be able to overcome the
relative convergence seen in the standard transverse resonance
method, but may add more analytical manipulations such as
complicated Fourier transforms.

In a previous paper, the authors reported the eigenfunction
weighted boundary integral equation method for the full-
wave analysis of various planar transmission lines with finite
metallization thickness [11]. Although the eigenfunctions are
simpler than Green’s functions, longer computation time and
relative convergence problems can not be avoided in the
case of an extremely large ratio of aperture widths among
subregions.

In this paper a new boundary integral equation method
[12] is applied for the study of the transmission properties
of conductor-backed coplanar waveguides which uses Green’s
functions, the Green’s identity, and the equivalence principle.
In comparison with varied transverse resonance techniques
combined with the mode-matching procedure where the nu-
merical expansion of hybrid fields are performed in each
rectangular subregion [5], [6], numerical processes of the
present procedure is limited only on each aperture between
two adjacent subregions because of a special choice of Green’s
functions which is satisfied with homogeneous boundary con-
ditions of each rectangular subregion. In short, the resultant
matrix is only related to the expansion of aperture fields not
to that of regional fields so that the present procedure is su-
perior to the above-mentioned technique in the computational
efficiency and accuracy for structures including an extremely
large difference of subregion widths.

The major difference between the present approach and the
mixed spectral domain method is that the Green’s functions
are set up in the space domain in the present method which,
therefore, can be extended to handle the transmission lines with
arbitrary cross sections similarly to the quasi-TEM analysis
using the boundary element method [13].

As a consequence of current trends in MMIC’s toward
higher frequencies and higher component densities, the ef-
fects of conductor thickness and conductor edge profile can
not be neglected anymore due to narrower strip widths of
microstrip lines [14], [15], narrower slot apertures of CPW’s,
and underetching and electrolytical growth in the fabrication
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Fig. 1. Cross-sectional geometry of CBCPW’s with rectangular or trape-
zoidal conductor cross-sections.

process. In this paper, we will especially focus our attention
to the effects of rectangular and trapezoidal conductor cross
sections on the transmission properties of microstrip lines and
conductor-backed CPW’s. A series of numerical results are
provided to show such important effects.

1I. ANALYSIS METHOD

In the previous publications [16], the free-space Green’s
function was generally chosen as an auxiliary function in
the boundary integral equation approach. In the analysis of
arbitrary cross-sections, the free-space Green’s function and
the whole-region Green’s function were used to analyze the
propagation properties of microstrip lines with finite metal-
lization thickness [17] and a trapezoidal transmission line [13]
based on the quasi-TEM wave approximation, and a microstrip
line with arbitrary cross section based on the rigorous full-
wave analysis [14] where boundary integrations were defined
on conductor surfaces using the Green’s function satisfying
the field continuity at substrate interface. As for coplanar
waveguides consisting of a wide conductor surface and a
narrow aperture surface, boundary integration contours should
be shortened and limited only on aperture surfaces by choosing
suitable Green’s functions.

Fig. 1 shows the cross-section of conductor-backed copla-
nar waveguides (CBCPW’s) with rectangular and trapezoidal
conductor strips of five kinds. Fig. 1(a) is a typical model
discussed in the previous analysis, and the other four kinds
of cross-sections as shown in Fig. 1(b)—(e) are profiles ap-
proximating some modifications caused by underetching or
electrolytical growth during the fabrication. Fig. 2(a) shows
a cross-section of CBCPW with an arbitrary conductor edge
profile. According to the symmetry of this structure, only a
half of the cross-section is taken into account in the analysis.
Since the magnitude of electromagnetic fields can be negligible
at a far away point from the central strip and the edge of
the ground conductors, an electric or magnetic wall at a far
point from the symmetrical plane is assumed to exist for
speeding up the series convergence of Green’s functions. In
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Fig. 2. Cross-sectional geometry of a CBCPW with arbitrary conductor edge

profile. (a) Cross-sectional geometry. (b) A half of the cross-section to be
analyzed.
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addition, any arbitrary configuration of aperture subregions can
be decomposed into rectangular subregions as shown in Fig.
2(b) of the half cross-section.

The half cross-section is divided into five uniform sub-
regions with rectangular configurations as shown in Fig.
2(b). Like the transverse resonance method, electromagnetic
fields in each subregion are written as a superposition of
the TM-mode and the TE-mode propagating in the z-axis.
The difference between the transverse resonance method and
the present method is that the analytical Green’s functions
satisfying the boundary conditions of rectangular subregions
are chosen as field expressions of the TM-mode and the
TE-mode for each subregion in the present method while
approximate mode summations are chosen in the case of
the transverse resonance method. The Green’s identity of the
second kind is written as

//S[G('r, r5)V2 ®(rg) — V2 G(r,75)®(rs)]dS

e

dT (1)

which results in fields in each subregion expressed in terms of
fields on the aperture of each subregion as follows:

aGe(r,
E(r) = — / —a(nL7§—)EZ(rs)dls (2a)
aperture S
mo=[ e Ias o
aperture S

where ¢ and G* denote the two kinds of Green’s functions
corresponding to the TM-mode and the TE-mode, respectively.
The symbols, r and 7, denote the field position and the source
position, respectively.

In order to conveniently utilize the tangential continuity of
fields on each aperture between two adjacent subregions, it is
necessary to transform the above normal differentiation terms
to tangential components and tangential differentiation terms,
Consequently, the following relations are derived by means of
a simple decomposition of Maxwell’s equations as

_ jwedE.  jBOH,
T k2 9y k2 Oz

(3a)
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OH, ;2 E.
~_fep OO (3b)
oy jwu wiy Oz
where
kz = w?pe — 2. 4

Substituting (3) into (2) and carrying out some transfor-
mations of differentiation terms, the magnetic fields in each
subregion are expressed in terms of the tangential electric
fields on the apertures, F, and I7,, and analytical Green’s
functions in the following form:

H, = [GllEx + G12Ez]d£vs

aperture

H.= / (Gor By + G E-]dus
aperture

(5a)
(5b)

where G11, G13, Ga1, and Gy are the four terms of the space
dyadic Green’s function which are written as

oG
Gy = U
11 ﬁzmj o (62)
2 2 g2
wue — kz._ 0°Gpy,
G — rm
12 zmj k2, Ozdzs (6b)
Go =k ) G (60)
0G,
G = ﬁij T (6d)
where
o ___2 ¢)gzs)
" akym sin(kymh)
coslkym(y — h)] cos(kymys) (y > ys)
(7
cos(kymy) coslkym(ys — )] (y <ys)
and
¢(z) =
sin{kym) (m=1,2,...,00)
(in subregion I, V)
coslkym(z —w/2)] (m=0,1,...,00)
(in subregion II, III, IV)
(3)
kem =
(2’”2;1)” (m=1,2,...,00) (in subregion I, V)

mr (m=0,1,..
s

.,00) (in subregion II, III, IV)
)
(10)

kym = \w2pe — B2 — k2,,

The magnetic fields as expressed in (5) are defined on the
aperture of various subregions to set up boundary integral
equations based on the continuity of tangential magnetic
fields. On the other hand, electric fields on the aperture
can be replaced by equivalent magnetic surface currents in
two opposite directions, M and —M, on the two surfaces

of perfectly conducting planes, according to the equivalence
principle [18]. In the practical computations, the tangential
magnetic fields and equivalent magnetic currents on each
aperture are expressed in a series form with finite terms.
Here, we select simple sine and cosine functions as the basis
functions for the magnetic fields and the equivalent magnetic
currents on each aperture. The continuity conditions on the
aperture between two adjacent subregions are expressed using
the Galerkin’s method with the same weighting functions as
the basis functions in the following integral form:

/ [HF — H Jwedz =0 (11a)
aperture

/ [H — H] Jw.dz = 0. (11b)
aperture

Based on the above relations, the equivalent magnetic
currents on the aperture of various subregions can be utilized
to connect field functions in two adjacent subregions. As for
the five rectangular subregions as shown in Fig. 2(b), four pairs
of boundary integral equations are formulated sequentially
substituting (5) into (11), in which only equivalent magnetic
currents on four apertures remain as the unknown functions
and other expressions have only the unknown propagation
constant. For the sake of simplicity, two pairs of boundary
integral equations are written for the cross-section with three
subregions, such as CBCPW with a rectangular conductor
cross-section as follows:

/ { UG + G + (6L, + G Maaldos
12 1

- / (G Mo + G{Izsz]d:rs}wﬂdw =0 (12a)
>

/ { [ Gk + GRIM1 + (Ghy + G Moildes
I 12

- / (G35 M5 + Gglemg]dxs}wzldx =0 (12b)
la

/ { J G + GIas + (G + Gl Mo
Iz

2

- / (G M, + G%Mﬂ]dws}wﬁdw =0 (12)

l

[ [ et + oot + @3 + Ghaies
by

53

- / (G My + GIQIQMwl]dms}wzgdm =0 (12d)
3

where {1 and I denote the aperture widths between the
subregion I and TI, and the subregion II and III, respectively.
The equivalent magnetic currents, M,; and M., on the
aperture between the subregion I and II, M., and M. on
the aperture between the subregion I and 111 can be expressed
in a series form using the following basis functions:

,00) (13a)

nmw

bo(zs) = cos [?(a;s —w/2)] (n=0,1...
¢.(z5) = sin [%E(xs —w/2)] (n=1.2,...,00). (136)

The weighting functions, w, and w,, are expressed by
the same functions as the basis functions, ¢, and ¢,, listed
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in (13). In numerical calculations, the number of the basis
functions and the weighting functions are taken as the same
finite number, /N, while the number of Green’s function terms
are selected as the finite number, M, independently from N.
The more terms in Green’s function series are taken, the more
rigorous results are naturally obtained. The increase of the
series terms, M, does not lead to any numerical instabilities
as seen in the transverse resonance method [5], but makes
numerical results more convergent to rigorous solutions.

As a result of the above manipulations, the integral form
of (12) can be rewritten as a system of linear homogeneous
equations with the order of 4N in a matrix form

e
Ao (Bl [Aw] [Bao] | |[Xo]| =10 9
[Cn] [Da1] [Ca2] [D22]d L[Z5]

where the symbols, [X1], [Z1], [X2] and [Z3], denote the
unknown sub-matrices corresponding to the unknown coeffi-
cients in the equivalent magnetic currents on the two apertures.
The unknown propagation constant, 8, is included in each of
the coefficient sub-matrices, [A;;], [By;], [Ci;], and [Dyj].

For the cross-section with the five subregions as shown in
Fig. 2(b), linear homogeneous equations with the order of
2(Ny + Ny + N3 + Ny) similar to (14) are derived based
on the analytical processes, where the symbol, IV;, denotes
the number of the basis functions on the j-th aperture.

III. NUMERICAL RESULTS

An generalized program is constructed based on the above-
mentioned model and all of numerical computations are per-
formed on a Sun 4 workstation. The convergence properties
in the present method are firstly illustrated in Fig. 3 for a
conductor-backed coplanar waveguide (CBCPW) with zero-
thickness strip conductor in the case of the width ratio of
(a/2)/s = 25. Fig. 3(a) shows the convergence curve and
CPU time with respect to the number of basis functions on
the aperture, NV, with the term number of Green’s function
series, M = 400. It is found in Fig. 3(a) that convergence
speed for the odd number N is much faster than that for the
even number N and CPU time is almost proportional to the
square of V. From the convergence curve with the number of
the basis functions NV = 3 as shown in Fig. 3(b), we find that
CPU time is almost proportional to M and effective dielectric
constants converge to accurate values without instability.

Fig. 4 compares the numerical results by the present method
with those given in [14] for an open microstrip line with a
trapezoidal conductor cross-section with the discrepancy of
less than 2.0%. There still exists a small discrepancy between
the two results produced by the assumption of two electric
walls. Fig. 5 shows that numerical results obtained by the
present method are in good agreement with those given in 5]
for a conductor-backed coplanar waveguide with a rectangular
conductor cross-section.

Compared with the microstrip line, the dispersion property
of the conductor-backed coplanar waveguide depends not only
on the substrate height and strip width but also on the slot
width located on the dielectric interface. Under our present
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Fig. 3. Convergence properties for a CBCPW with zero-thickness strip
conductor (w = 72.4 pm, s/w = 0.5, a/w = 25, h = 100 pm, &, = 12.9)
(a) Number of basis functions and its CPU times. (b) Number of Green’s
function series and its CPU times.
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Fig. 4. Comparison of the propagation constants of the microstrip line having
a trapezoidal conductor cross-section calculated by the present method with
those given in [14] (w = 3 mm, ¢ = 0.3 mm, A = 0.635 mm, ¢ = mm,
15 & = 9.8).

knowledge, any theoretical or experimental report on the
entire shape of its dispersion curve has not been published.
With the increase of frequencies, conceptually, the effective
dielectric constant of the dominant mode tends to the relative
permittivity of the dielectric substrate. However, it is difficult
theoretically to give a quantitative judgment on the position
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Fig. 5. Comparison of the propagation constants of a CBCPW having finite
metallization thickness calculated by the present method with those given by
51Qw=5=80pum, ¢ =12mm, h = 03 mm, ¢t =5 um, ¢, = 12.9).
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Fig. 6. Effective dielectric constants versus frequencies for a CBCPW with
finite metallization thickness (w = 72.4 pm, h = 0.1 mm, &, = 12.9).

where the relatively rapid increase in e, starts and how fast
its increase speed is. A series of entire dispersion curves with
different slot widths will initially be provided as follows.

Fig. 6 provides some dispersion curves for conductor-
backed coplanar waveguides with strip conductor thickness
t =0, 5, and 10 ym for the aperture width of s/w = 0.25
and 2.0. Strip conductor thickness will give stronger effects
on effective dielectric constants of CBCPW in the case of
smaller aperture widths than large ones. At high frequencies,
the effective dielectric constants with the same aperture widths
are always close to the same values. The effective dielectric
constants for small aperture widths are smaller than those
for large aperture widths at low frequencies, but situation
is reverse at high frequencies. Fig. 7 shows the effective
dielectric constants versus aperture widths for strip conductor
thickness ¢t = 0, 5, and 10 gm at f = 1 GHz and 30 GHz.
With the decrease of aperture widths, the effective dielectric
constants for ideal zero conductor thickness will tend to a
stable value. However, those for finite conductor thickness
will always close to the permittivity of air region due to the
concentration of electromagnetic energy into gap subregion
filled with air.

For a CBCPW with the trapezoidal strip conductor cross-
sections, the number of steps in a staircase approximation

€ eff

s/w
(b)

Fig. 7. Effective dielectric constants versus aperture widths for a CBCPW
with finite metallization thickness (w = 72.4 um, s{w = 0.25, h = 0.1 mm,
er = 129). (a) f = 1 GHz. (b) f = 30 GHz.

k=]

s/w=0.25

€ eff

0 .
91350 Fig.9(a)

4
Number of steps

Fig. 8. Convergent diagram of the number of steps for the conductor
thickness ¢t = 5 pum. :

should be proportional to the conductor thickness for an exact
modeling. For the case of relatively thin conductor thickness
(t = 5 um in Figs. 9-11), however, it is found from the
convergent diagram as shown in Fig. 8 that a three-term stair-
case approximation is accurate enough to model the edge of
the trapezoidal conductor.

Fig. 9 shows the dispersion curves of CBCPW with the
trapezoidal strip conductor cross-sections for aperture widths
s/w = 0.25 and 2.0. It is found that the angles of conductor
edge wall affects the transmission properties in the case of
s/w = 0.25 over the case of s/w = 2.0 especially at low
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Fig. 9. Effective dielectric constants versus frequencies for a CBCPW with
trapezoidal conductor cross-section (w = 724 pm, h = 0.1 mm, { = 5 pm,
er = 12.9). (@) s/w = 0.25. (b) s/w = 2.0.
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Fig. 10. Effective dielectric constants versus the angle for the structure given
in Fig. 9.

frequencies. Fig. 10 provides effective dielectric constants
versus angles f with aperture widths s/w = 0.25 and 2.0
at f = 1 and 30 GHz. Figs. 9 and 10 tell us that effects of
conductor edge wall angles in the small aperture widths of
CBCPW must be necessarily taken into account especially at
low frequencies even if conductor thickness is very small.
Fig. 11 shows dispersion curves of CBCPW with other
trapezoidal strip conductor cross-sections for s/w = 0.25 and

Frequency (GHz)

Fig. 11. Effective dielectric constants versus frequencies for a CBCPW with
trapezoidal conductor cross-section (w = p 724 m, h = 0.1 mm, ¢ = 5
um, &, = 12.9).

2.0. Aperture widths also give some effects on transmission
properties but the angles of conductor edge walls produce
smaller effect on transmission properties compared with the
structures in Fig. 9, even in the case of small aperture widths.

Until here, dispersion characteristics of CBCPW lines with
trapezoidal cross-sections have been analyzed numerically for
different aperture widths. With the decrease of aperture widths,
it is found that propagation constants are affected markedly
by conductor edge profiles. In the case of an extremely small
aperture width for CBCPW lines, a small variation of the angle
of conductor strip edge walls can still bring a huge affection
on propagation characteristics because of a concentration of
field distributions on the aperture, which should be given a
well worthwhile attention in the design of small-sized devices
and components of MMIC’s.

IV. CONCLUSION

In this paper, the boundary integral equation method was ex-
tended for the analysis of transmission properties of conductor-
backed coplanar waveguides with rectangular or trapezoidal
strip conductor cross-sections. Because electromagnetic fields
in each subregion are expressed using an arbitrary number of
Green’s function series terms independently from the form
of tangential fields on each aperture, this approach could
shorten computation time and avoid relative convergence
problems. Effects of conductor edge profile on transmission
properties were discussed for different sizes of aperture width
and strip conductor thickness. This Green’s function method
can be easily extended to study the transmission properties
of planar transmission lines, such as microstrip lines and
coplanar waveguides, with arbitrary conductor cross-sections
and complicated multiple dielectric substrates.
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